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SU, 3 SU, x SU,, SU,, 2 SO,, and Sp, 3 U, 

Sigitas AliSauskas 
Institute of Physics, Academy of Sciences of the Lithuanian SSR, Vilnius 232600, USSR 
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Abstract. General analytical expressions for isoscalar factors (reduced Wigner coefficients) 
for the couplings (PO) x ( 0 q )  to (AOp) and (p,O) x(p,O) to ( A V O )  in the chains SU,2SU2 X 

SU, and S u n  2 S 0 ,  ( n z 3 )  are derived by using the algebra of complementary groups 
and methods of analytical continuation. A review of alternative approaches to the problem 
grounded on the concept of biorthogonal systems of non-canonical bases is given. It is 
demonstrated that the construction of dual bases (polynomial and stretched or related 
ones) is associated with the use of certain bilinear combinations of isoscalar factors and 
solutions of the boundary value problem for isoscalar factors. Overlaps are given for 
different non-canonical basis states of the two-parametric irreducible representations for 
the chains SUI 3 SU, xSU,, SU, 3 SO,, and Sp, 3 U2, as well as the expansions of the 
projected basis states for Sp, 3 Uz in terms of canonical basis states. A new expression 
for some special SU, Clebsch-Gordan coefficients is also given. 

1. Introduction 

The Clebsch-Gordan or Wigner coefficients of unitary groups for non-canonical bases, 
corresponding to the reductions SU4 ~3 SU, X SU2, SU,, 2 SO,, and, especially, SU3 2 

SO,, are very important for different group theoretical models of the nucleus. These 
chains of subgroups have applications in Wigner supermultiplet theory and in the 
theory of collecti7.e excitations; Sp, 2 U, also has application in the theory of the 
five-dimensional q,iasispin. All these restrictions are not multiplicity free and analytic 
methods allow us to construct only non-orthogonil1 basis states and coupling 
coefficients. 

An extensive literature exists on the SU, 2 SO3 problems, beginning with the papers 
by Elliott (1958), Bargmann and Moshinsky (1960, 1961), Sharp et al (1969) and von 
Baeyer and Sharp ( 1970), where projected, polynomial and stretched non-canonical 
bases were introduced. All these bases are, however, non-orthogonal. Asherova and 
Smirnov (1970, 1973) (cf Filippov et al 1981) have very effectively used projection 
operators expressed as polynomials in the SO, generators instead of integral operators 
in the group elements. The review by Moshinsky er a1 (1975) was a serious attempt 
to discuss systematically the different bases of SU3 2 SO3 from a uniform viewpoint, 
but only AliSauskas (1978) demonstrated that the renormalised basis of Bargmann- 
Moshinsky (1960, 1961) and stretched basis of Sharp et a2 (1969) were dual, i.e. that 
they form a biorthogonal system of vectors. It was shown by AliSauskas (1978, see 
AliSauskas er al 1981) that the renormalised Bargmann-Moshinsky states can be 
expressed as certain linear combinations of orthonormal SU3 3 SO, states with special 
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isoscalar factors (reduced Wigner coefficients or, briefly, isofactors) as expansion 
coefficients (the explicit expressions of these isofactors are not necessary). Otherwise, 
the Bargmann-Moshinsky states can be obtained by means of a coupling procedure 
in which special bilinear combinations of isofactors are used as the coupling coefficients 
for direct product states as defined by Moshinsky et a1 (1975). The stretched states 
can be obtained by means of the coupling procedure with the help of isofactors which 
satisfy special boundary conditions. The matrices formed by the former coupling 
coefficients and by the last ones are mutually inverse. The linearly dependent gen- 
eralised Bargmann-Moshinsky states may be expanded in terms of the complete system, 
the expansion coefficients being the isofactors which couple to the stretched states. 
The concept of dual bases has permitted us to construct the invariants of the group 
and to find the expansions of given functions in terms of the desirable non-orthogonal 
basis states. The expressions of the metric tensors and overlaps for different above- 
mentioned bases as well as the mutual expansions of the different non-canonical and 
canonical basis states were considerably simplified by AliSauskas ( 1978). 

A polynomial supermultiplet basis for SU4 2 SUP x SUI was proposed by Brunet 
and Resnikoff ( 1970). The basis taken for the polynomial by Ahmed and Sharp (1972) in 
fact is a generalisation of the stretched basis, because it can be expanded by means of 
triangular matrices (given in explicit form by AliSauskas and NorvaiSas (1979)) in 
terms of the projected basis states introduced by Draayer (1970) (cf Ahmed and Sharp 
1972, NorvaiSas and AliSauskas 1977, NorvaiSas 198 1). 

The basis states of the symmetric (one-row) representations of U, 2 0, 2 On, +On. 
(n’ + n”= n, n ’ ’ 3  1) were obtained by AliSauskas and Vanagas (1972) by means of the 
complementary group technique. There were some attempts (Prasad 1972, Mickelsson 
1973, Jarvis 1974) to construct more general SU, 2 SO,, states before AliSauskas and 
NorvaiSas (1980) found the biorthogonal systems of isofactors for couplings of the 
basis states of two symmetric covariant irreps (irreducible representations) as well as 
of covariant and contravariant irreps in the chains SU, 2 SUI x SU2 and SU, 3 SO,?. 
The methods used for SU, 2 SU2 X SU, have been generalised by means of the com- 
plementary group technique (Moshinsky and Quesne 1970, 1971, Quesne 1973, Deenen 
and Quesne 1983, Knyr et a1 1975, AliSauskas 1974, 1976, 1983c) in order to solve 
completely the labelling problem for the states of two-parametric (covariant and mixed 
tensor) irreps in the SU, 2 SO, chain. However, most of the expressions for isofactors 
given by AliSauskas and NorvaiSas (1980) are far from being optimal. Later (AliSauskas 
1982, 1983a) the corresponding isofactors for coupling states of two symmetric irreps 
to projected basis states (Draayer states), as well as the overlap matrices, have been 
expressed in terms of triple sums. 

It was shown by AliSauskas and NorvaiSas (1980) that the states of projected and 
stretched bases of the two-parametric mixed tensor irreps of S U 4 2  SU, xSU, are 
proportional. (Analogous SU3 2 SO3 bases are related to each other by triangular 
matrices-see Sharp e? a1 (1969), Moshinsky et a1 (1975), AliSauskas (1978).) In such 
a way the solution of the boundary value problem for isofactors which perform the 
couplings ( p b )  x(0q)  to (AOp) in chains SU,, 3 SO, was proposed$ (AliSauskas 1983a). 

t Some other examples of biorthogonal systems associated with the internal or external multiplicity problem 
of irreps are discussed in the review by AliSauskas (1983~).  
$ It is convenient for our purposes to denote the irreps of SU, by differences of the lengths of rows in 
Young tableaux. The irreps of SO,, however, are denoted by Young tableaux as [L,L,O]. Only two-parametric 
irreps are under consideration here. The necessary number of zeros is denoted by 0. 
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However, the expressions obtained by AliSauskas (1982, 1983a) are not sufficiently 
convenient in some domains of the parameters. For example, they do not simplify 
considerably when scalars of SO, in irreps (AOp) or ( A V O )  of SU, appear, contrary 
to the results obtained by Hecht and Suzuki (1983) for SU3 

The main result of this paper is a new expression for isofactors which couple the 
states of irreps ( P O )  and ( 0 4 )  to the states of a polynomial basis of SU, 3 SU, x SU2 
and SU, 2 SO,. The combination of methods of AliSauskas and NorvaiSas (1980) and 
those of Hecht and Suzuki (1983) with complementary group technique allowed us to 
express these quantities as fourfold sums. 

The analytical continuation of the quantity obtained by means of special substitu- 
tions of the parameters of irreps (see AliSauskas and Jucys 1967, 1974) permitted us 
to find the isofactors for coupling (p ,O) x ( p 2 0 )  to ( A V O )  as well. In such a way the 
bilinear combinations of isofactors (summed over the multiplicity label) were found. 
In order to get a general view of the solutions of the problem and, in particular, to 
demonstrate the completeness of results for the labelling problem, some results of 
AliSauskas and NorvaiSas (1980) and AliSauskas (1982, 1983a) are discussed and 
developed for the solution of the boundary value problem. 

The analytical continuation of the isoscalar factors under consideration allows us 
to obtain new information about the basis states of the complementary group Sp,, and 
in particular to find a new expansion for projected basis states of five-dimensional 
quasispin by Smirnov and Tolstoy (1973) (cf AliSauskas 1983b) in terms of canonical 
basis states, as well as the corresponding overlaps. 

All the expressions for isofactors and overlaps are derived at first for SU4 =I SU2 X 

SUP, but for economy of space they are written below only for SU, 2 SO, (with slight 
difference in phases in the SU, =I SO, case). Some details of the analysis are given in 
appendices 1 and 2. 

The new expression (in appendix 2) for the SU2 Clebsch-Gordan coefficients with 
a zero-valued projection of angular momentum may be of some importance for angular 
momentum theory. 

The methods of AliSauskas (1978), effective only in the SU, 2 SO3 case, allowed 
us to obtain the overlaps of the non-canonical basis states given in appendix 3. Some 
special isofactors and overlaps are transformed into their most convenient forms in 
appendix 4. 

The results of this paper are useful for SU,, SU, and SU, irreducible decomposition 
of the nuclear Hamiltonian (Taurinskas and Vanagas 1977) and the nuclear density 
matrix (Kalinauskas and SviEiulis 1982) with rotationally invariant interaction (cf 
Hecht and Suzuki 1983) and vector and tensor forces included. 

The analytical continuation of discrete functions under consideration is possible 
when the intervals of summation are fixed, i.e. when these functions may be expressed 
as polynomials in the remaining parameters. In the expressions which follow, the 
intervals of summation parameters are restricted by values for which simple factorials 
in denominators are finite. There is no problem with the analytical continuation in 
cases when the remaining factorials (in fact the ratios of factorials) are expressed as 
quasipowers or Pochhammer symbols with fixed indices. However, the use of simple 
and double factorials is more convenient. For n even, almost all double factorials can 
be changed to simple factorials. We will use the convention that double factorials of odd 
negative integers are always finite (for example (-l)!! = l ) ,  while for even negative 
integers they are infinite. The indeterminacies of type 0' and some others mentioned 
below are taken as 1. 

SO3. 
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If whole Clebsch-Gordan (Wigner) coefficients for the chain SU, 2 SO, 2 SO,,-I 1 
. . are needed, the results of NorvaiSas and AliSauskas (1974) (the expressions 

for special isofactors of SO, 1 SO,- , )  should be taken into account (with the corre- 
sponding phase changes discussed by AliSauskas and NorvaiSas 1980). 

2. Complementary groups, polynomial states for mixed tensor irreps (AOp) and 
bilinear combinations of isofactors for coupling (PO) x ( 0 4 )  to (AOp) 

Let us take 2 n  boson creation operators qi and which transform with respect both 
to SO, as two vectors and to SU,, as a covariant and a contravariant vector, respectively. 
The corresponding annihilation operators 7, and & transform as a contravariant and 
a covariant vector of SU,, respectively. These operators satisfy the usual commutation 
relations 

Then the elementary scalars of SO,, 

form the Lie algebra of the complementary group Sp(2,2). The elementary scalars 
of SU, ( ~ 5 ) ~  ( q f )  belong to the Lie algebra of SU(1, 1). 

The commutation relations between the elementary scalars (2.2) may be easily 
written. However, spherical coordinate are more useful for our purposes than Cartesian 
ones (cf AliSauskas and Vanagas 1972, Deenen and Quesne 1983,s 3). Then elementary 
scalars (2.2) can be obtained by the coupling procedure. The coupling procedure 
allows one to construct the elementary highest weight states for the irrep [l ,  11 of SO, 
(or O3 if n = 3)  as well. Let us denote them as 

[77511,1 = 7 ) ( + l Y 5 + 2 ) -  77(+2,5(+1, (2.3a) 

( q * k ) ,  5 ( * k )  are the spherical components), 

[77511= 71150- 71051, (2.36) 

[77511,0 = 771/2 1 / 2 5 1 / 2 - 1 / 2  - 771/2-1/251/2 I/2 ( 2 . 3 ~ )  

for the special cases of S 0 3 ( 0 3 )  and SU2 X SUI - SO,. 
Thus all the elementary permissible diagrams (EPD) are constructed. The com- 

plementary group technique (cf AliSauskas and Vanagas 1972) allows one to obtain 
normalised highest weight states for any two-parametric irrep of SO, as polynomials 
in ( ~ v ) ,  (&), [715l1,,, T h w ,  5 h w  (in particular, the power of [77(], is not higher than the 
first in the SO3 case). Such states belong to special direct product states of SU, for 
the representation (AO) X(Op).  In order to eliminate the unwanted irreps of SU,, one 
must act rather with the projection operator of the complementary group SU(1, 1) 
than with the SU, Casimir operator used (for n = 3) in an analogous situation by 
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Hecht and Suzuki (1983) in the case of SO3 scalar states. The projection operator 
(AliSauskas and NorvaiSas 1980) 

( a  + n - 1 )  
[ r !  r r ! ( a  + r + n - l)![a + r ' +  n - I ) ! ] " ~  

P; = 

x X !  

leaves only the state of the irrep (AOp) of SU,, ( A  + p  = a )  when applied in the direct 
product state ( A  + r', 0 )  x (0 ,  p + r') and transforms it into a homogeneous polynomial 
of degrees A + r  and p + r  in vi and 6, respectively. 

The relation by Asherova et a1 (1980) 

b-i--L E z - i  E :-& E t+2p E a ! b ! (&,cl N p ,  01 +p)'  E ; E : = ~  
i, ( a  - i) ! ( b - i - t )  ! ( i - t ) ! t ! 2' 

(2.5) 

(N,+, Np, are the structure constants of the Lie algebra) allows one to transfer the 
annihilation operators through the creation operators and by means of some summation 
formulae of binomial coefficients (Jucys and Bandzaitis 1977) to obtain the expansion 
for SUI 3 SU, x SU, or SU, 2 SO,, irreducible states as polynomials in the above- 
mentioned EPD and ($). In fact the states obtained are linear combinations of the 
orthonormal states. The weight factors are special isofactors, which correspond to the 
contribution of the state of the irrep ( h o p )  in the direct product state. 

Now we can use the polynomials obtained, following Hecht and Suzuki (1983), as 
the generating functions for isofactors. First of all let us expand the particular case 
of the polynomial (more exactly, monomial) with disappearing elementary scalars 
(77) and (55) in terms of direct product states. The special isofactors needed may be 
expressed as overlaps of the special state under consideration and special states of the 
symmetric irreps ( P O )  and ( 0 9 )  (cf Ahmed and Sharp 1972) and can be found by the 
usual methods of second quantisation. (The states must be expanded as polynomials 
in the creation operators.) 

Let us replace the monomials in ( ~ t ) ,  [p$]l,l, T]hw, 5hwy included in the general 
polynomial states for SU, =, SU, x SU, or SU, 3 SO,, by the expansions obtained. The 
action with the operators ( 7 ) ~ ) ~  and ((Ob allows us to represent the general polynomial 
state as an expansion in direct product states. 

The expansion coefficient contains a fourfold sum. Two sums belong to the 3F2( 1 )  
class and may be transformed into a more convenient form by the methods of Jucys 
and Bandzaitis (1977) used for SUI Clebsch-Gordan coefficients. 

The above-discussed deduction was simplest in the SU, 2 SU, x SU, case. The 
substitutions (AliSauskas and NorvaiSas 1980) 

p + p  + f n  - 2 ,  

S + f ( L , + L 2 + n ) - 2 ,  

j ,  -* bZ2 +an - 1, 

(the symbols S, T, j , ,  j ,  are used here for parameters of spin or isospin type), grounded 
on the dependence between the coefficients of the Wigner-Racah calculus of com- 
plementary groups, lead to the following expression for bilinear combinations of 

q + q +in -2, A + A +an - 2 ,  p + p + f n  -2, 

7- + t(L1 - L2L j ,  +ill + $ n  - 1, 

j l o - * t Z l o + t n  - 1 ,  j 2 0 + f Z 2 0 + t n -  1 

(2.6) 

(2.7) 
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( A  + p  + n - 1)(2I, + n  -2)(212 + n -2)(2Z,o+ n -2)!! =i ( A  + p  + n  -2)!(p-A)!(A + q  + n  - 1)!(2L1 + n  -2)!! 

( A  + p - LI + L2 + n - 2)!! 
X 2(A +p+L, -L2+n-3 ) /2  

(-1)"'"''2"-'-"(A + p  + n - 2 - ~ ) !  x c  
x, y ,  1, U U ! z ! ( y - z ) ! ( x - y - z ) ! ( L 1 - 120 - x + y + z )  ! ( z20 - L2 - y + 2)  ! 

( p  - A +x)  ! (LI - 120 - x +2y)! 
( A  + p  - Ll +L2 + n  -2 -2~) ! ! [ i (p  - A  +]lo-  I I )  + y  - U]! 

X 

( 1 2 0 -  L2 + x  -2y)! 
X [f( p - A + I20- 1 2 )  + X  - y  - U]! 

( I I  + l2  + L ,  - L2 + n - 2 +2u)!! 
X [f( 1, + I10 - p  + A )  - L2 - x + y  +U]![;( 12 + Z2o-p + A )  - L2 - y +U]!  

X{[$(A - 110) -~]![&(p - 120) - x +y]! ( p  - A + I , ,  + I ,  + n -2 +2y)!! 

X ( p  - A + 120 + 12 + n -2 +2x - 2~)!!}-'. (2.8) 

Here w is a multiplicity label of orthonormal basis states, 

110 + I20 = Ll + L2, p - q = A - p .  

Now we have obtained a complete system of non-orthogonal isofactors of SU, = SO, 

Here the following notations are introduced: 
for the coupling of (pi)) x ( 0 q )  to (hop)  into polynomial ( B )  states. 

W,( p ,  I )  = [( p - I )  !! ( p + I + n - 2)!!y2, 

Wl,( p, 1) = [( p + I + n - 2)!!/( p - z)!!]l'2, 

(2.9) 
(2.10) 

(2.1 1) 
I / 2  

v,,,, 1k](h12; L1L2)=  (I? A1(412; L1L2)) / n A,(412; LILZ), 
1=0 1-[11 1k1 

A o = ( I I  +Z2+Ll +L2+2n-6)!! ,  Ad= ( I ,  + 12 + L1 - L2 + n -2)!!, 

Al=(LI+L2-II  +l2+tl-4)!!, 

A2= ( I ,  - I 2  +Ll +Lz + n -4)!!, 

A, = ( I ,  + 12 - LI +L2 + n -4)!!, 

A,=  (LI - L2- I ,  +12)!!, 

Ag= ( 1 ,  - 12 + L1- LZ)!!, 

A , =  ( I I  + I 2 -  LI - LZ)!!. 

(2.12) 
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In the phase factors we use for n = 3: 

+ = & I ,  +l2-L,-L2), Q'=f( l , -12-L,+Lz) ,  cp = t ( PI - 1, + p2 - 1 2 ) ,  

(2.13) 
Q = Q' = (p = 0 otherwise. 

3. Stretched states and the boundary value problem for coupling (pO)x(Oq)  to (AOp)  

A well known construction (for SU3 3 SO3 perhaps starting with the papers by Engeland 
(1969, Vergados (1968), Asherova and Smirnov (1970), von Baeyer and Sharp (1970)) 
allowed us (AliSauskas and NorvaiSas 1980) to write an expression for isofactors which 
couple the states of irreps (PO) and ( 0 4 )  to projected Draayer states of SU, 3 SU, X SU2. 
It appeared that such isofactors (after renormalisation) satisfy elementary boundary 
conditions, i.e. that they are proportional to the isofactors which perform the coupling 
to stretched basis states. The stretched ( S )  basis is dual to the polynomial basis B 
introduced in 0 2 (i.e. the bases S and B are obtained by means of direct and inverse 
transformations of the orthonormal basis, respectively) ; the corresponding isofactors 
satisfy the following boundary conditions: 

if p = A, 4 = p and the parameters I , ,  I ,  take values satisfying the condition I ,  +1, = 
Ll + L2. 

In fact, the solution satisfying boundary condition (3.1) enables us to express an 
arbitrary isofactor of the class under consideration in terms of its values in a certain 
region of parameters, equivalent to multiplicity labels. For example, the general bilinear 
combination of isofactors takes the form 

1'1 1; W[LIL21 

The completeness of the system of isofactors which satisfy the boundary condition 
(3.1) is evident if their existence is proved. The expansion (3.2) also allows us to prove 
the completeness of the polynomial bases introduced in 4 2. 

Between the labels of Draayer states and stretched states there is the following 
correspondence: Ks = S, KT = j 1 0 - j 2 0 .  Some quantities from equation (3.3) of AliSaus- 
kas and NorvaiSas (1980) were represented as Clebsch-Gordan coefficients of SU2 and 
using the Wigner-Racah algebra of SU2 for summation, the following expression for 
SU4 3 SU2 X SU, isofactors satisfying the boundary conditions was obtained (AliSaus- 
kas 1983a) (jl0 +j20  = S 3 T ) :  

(&A + j l o  + I)(fp +j20 + 1)(2S + 1)  
(2jlO + 1) ! (2j20 + 1) ! 
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On the RHS of (3.3) both the stretched 9j-coefficient of SU, (denoted by braces) and 
the Clebsch-Gordan coefficient of SU2 (denoted by square brackets) appeared. (The 
phase factor is slightly changed in comparison with AliSauskas (1983a).) 

The use of specially chosen (not the most symmetric) expressions for the quantities 
of angular momentum theory in (3.3) allowed us to simplify the final expression up 
to the triple sum and to continue it analytically for isofactors of the chain SU,, = SO,, 
(I,, + 12, = L ,  + L2) ,  yielding the result 

I [ 1, 12 (~lO~20)[LlL21 
(PO) ( 6 4 )  

= (- 1 ) ( 1 , + I , - L , - L , ) / 2 - + 2 ( A + q + l , + 1 2 , + f l - 3 ) / 2 - I ,  

[(211 + n - 2)(24 + n -2)1Ii2 WXP, 1,)  WXA, 11,) W X p ,  120) 
X 

[&(A +CL +Li+Lz)+n-31! Wn(q, h ) V n [ s , 7 1 ( ~ 1 ~ 2 ;  LiL2) 

( A  S p  + n - l ) ! ( p  -A)!(2Ll + n  -2)!! (2L2 + n  -4)!!  
x(  ( A  + + n - 1) ! (2110 + n - 2) ! ! (2120 + n - 2) ! ! 

(Ll - 120)  ! (Ll + + - 3) ! 
X 

(120 - L2) ! 

(- l)"+y+z[;(q - I z )  + X I !  (212 + n - 4 -  2x)!! 
x c  

", y, X !  [i( p - A - 12 + 120) +XI! Z !  [ & ( I ,  + 12 - LI - L2) - x - z]! 

( I ,  - 12 + L ,  + L2 + n - 4  +2x)!! 
( p + I , + n - 2 - 2 2 ) ! !  

X 

[f( p - A + I ,  - I l o )  - z ] !  [f( p - L1 - L2 + 12)  - x - z ] !  
[&( p - A + 12 - 120) - x - z ] ! Y !  (LI - 120 - y ) !  

X 

[&(A + p  + L ,  +L2) + n - 3 + z]! 
X 

[f(L, - L z -  I ,  + I , )  -y]! 

( L ,  - L2 - y ) !  (1 ,  + 12- LI + L2 + n - 4  + 2 y ) ! !  
X 

( I ,  + l z -  Ll + L z -  n - 4 - 2 x  +2y)!! 

( A  + . q  + I l o -  I ,  + L1- L2 + n - 2 - 2 ~ ) ! !  
X ( A  + p  + 2 L , - I I - / 2 + n - 2 + 2 x - 2 ~ + 2 z ) ! ! '  (3.4) 

AliSauskas (1983a) also obtained another expression for this isofactor, with a different 
kind of summation intervals. For special values of the parameters p = A, q = p the 
following expression in terms of SU, Clebsch-Gordan coefficients (for n even) or their 
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analytical continuation (for n odd) is more convenient: 

1 
- (- - ) c l ,  + 1 2 - ~ I - ~ 2 ) / z - ~ 2 ( ~ ,  + ~ , + n - 4 ) / 2  

Both quantities (3.4) and (3.5) gain no phase factor if permutation of the parameters 

P*49 A*F, 11*12, ~l0*40 (3.8) 

is performed. 
By means of the projection operators of the subgroup SU2 x SU2, the overlaps of 

the projected Draayer states of S U 4 3  SU2 xSU, were expressed (NorvaiSas 1981) as 
fourfold sums and transformed to a more convenient form (AliSauskas 1983a). The 
corresponding overlaps of stretched states of SU, 3 SO, take the form 

(2LI + n - 2) !!(2L2 + n - 4) !!(A + ll,, + n - 2)( /I + 120 + n - 2) 
[(21,,+n -2)!!(21,,+n -2)!!(21iO+n -2)!!(21iO+n -2)!!]1'2 

X 

( A  + p  -Z{o+l~o+n-4-2x)!!(2A +n-4-2y)!!(2p +n-4-2z)!!  
y ![4( A - ll0) - y] ! ( A  + I lo  + n - 4 - 2y) ! ! z ! [f( p - l zO)  - z]! 

(y + z) ![;(A + p  + llo + lie) + n -4 - y - z]! 

X 

X 
( p  +I;,+n-4-2z)!!(y+z-x)! 

x{ [~ (A + p  + L , + L , ) + ~ - ~ + X - ~ - Z ] ! ) - ~  (12021i0). (3.7) 

4. Intermezzo. New expansion of projected basis of five-dimensional quasispin 

Smirnov and Tolstoy (1973) proposed a construction of the complete basis for the 
reduction Sp, 2 U2 (SO, 2 SO3 +SO2),  different from those by Ahmed and Sharp (1970). 
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The expansion coefficients of these basis states in terms of the canonical basis (corre- 
sponding to the reduction Sp, 3 SU, x SU,) were simplified by AliSauskas (1983b). 
The complementary group technique allowed us (AliSauskas 1983b) to find the corre- 
sponding expansion of the dual basis states as well. The substitutions (AliSauskas and 
NorvaiSas 1980, see AliSauskas 1983c) 

p + -2M - 2 ,  

S + - K - A - 2 ,  T + K - A ,  j l o + - K + a - l ,  Jz0 + -A - CY - 1 

q + -2N - 2, A + - V -  T - 2 ,  p + V - T - 2 ,  

(4.1 ) 

into the expression for the SU, ZJ SU, x SUI isofactor, represented by (2 .8) ,  allowed 
one to find the following expansion coefficient: 

(;:;-I a *%A 
(2T + l )E(KAaVT) 

( K  - A  + T)! = 6 ,  M - N ~ M ~ ,  M+N 

(2T)! (2Z + 1 ) ( 2 J  + 1)( T + M j - ) ! ( Z - M ) ! ( J -  N ) ! ( 2 K  + l ) !  
( T - Mj-)!  ( I  + M ) !  ( J  + N ) !  ( K  + A  - I - J ) !  ( K  + A  + I  - J + l)!  

(2A)  ! (2K +2A + 2 )  ! ( K  - A + I - J ) !  ( K  - A - I + J ) !  (I + J  - K +A)!  'I2  1 X 
( K  + A - I + J + l ) ! ( K  + A + I + J + 2 ) ! ( K  - A + I  + J + l ) !  

( K  - A  + T + z ) !  ( T - Mj- + x ) !  (- 1 )  K +A-I  -J+x+u . c  
x, ,,, 2, z ! ( X  - y - z)! ( y  - Z) ! (2a - x + y + z ) !  (2K - 2A - 2a - y + Z) ! 

( 2 a - ~ + 2 ~ ) ! ( 2 K  -211-2a + x - ~ , v ) !  
X 

u ! ( I  + J - K  + A - u ) ! [ $ ( T -  M T ) - K  + a  + I  + y - u ] ! ( 2 T + x + l ) !  

[ K  - a +I-;( T - MT) -v]![A S a  + J - f (  T- Mj-)  - X  + y ] !  
X 
[f( T- Mj-)  - A -  a + J  + X  - JJ - U]! [ K  + -$( T - Mj- )  - I - x + y + U]! 

X{[2K - A  - -$( T -  Mj-) - J  - y  + u ] ! [ K  - -f( T+ V )  -r]!  
X [A + - f( T - V )  - x + J J ] ! } - '  (4.2) 

where 

[ K  - -;( T + V ) ] !  [ K  - a + f( T + V )  ! [ A  + a - :( T - V ) ] !  

(2K -2A - 2 a ) ! ( 2 a ) !  
(2K - 2 a ) ! ( 2 A  + 2 a ) !  

X [ A + a  +$(T- V ) ] !  (4.3) 

The projected (renormalised) states of Sp, 3 U2 here are obtained by the action of 
the projection operator of the subgroup SU2 into special canonical basis states (as 
defined by AliSauskas and Jucys 1969, 1971) 

The relations between our parameters and those of Smirnov and Tolstoy (1973) 
are as follows: 

f , = K + A ,  f z = K - A ,  pI = K -a +f( T -  v), p* = 2a. (4.5) 
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The overlaps of the projected states may be expressed as particular cases of (4.2) 
with I + J = K + A ,  a ' = K - I = J - A ,  M + N = M , = T .  It is not difficult to obtain 
the expansion coefficients for symmetric irreps (KO) and (AA) from (4.2). They take 
the forms of 3F2( 1 )  and Saalschutzian ,F3( 1)  series (see Slater 1966), respectively (cf 
Ahmed and Sharp 1970, AliSauskas 1983b). 

The linearly independent states are those with parameters t 

a sA=min[T-$ , ,  A + $ ( T -  V ) ] ,  

6,=0 or 1, 2K - T + V -  6, being even. 

The expansion coefficient of linearly dependent states takes the following form (cf 
Smirnov and Tolstoy 1973, AliSauskas 1983b): 

(-1)"- ( K  - A -  T + A -  a) !E(KAa 'VT)  Qy;) v.r = (4.7) (a'- a ) ( A -  a ) ! ( " - A -  l ) !  ( K  - A -  T + A -  a ' ) !E(KAaVT) '  

In order to derive (4.7) both the main and superfluous states should be expanded 
in terms of states of the auxiliary basis related to the symmetric basis of Ahmed and 
Sharp (1970) and the matrix of the inverse transformation should be found. The 
expansion coefficients (4.7) will be needed later in 8 6 and appendix 1. 

5. Projected states of two-rowed irreps and isofactors for coupling ( plO) x (p,O) to 
(AVO) 

The states of the two-parametric covariant representations of SU, 2 SO, are also the 
states for the chain of the complementary groups Sp(4, R )  3 U2. TherefoLe the substitu- 
tions (AliSauskas and NorvaiSas 1980, see AliSauskas 1983c) 

PI +PI + i n  - 2 ,  P2 + P2 + f n - 2, A + A ,  U +  v + f n - 2 ,  (5.1) 

together with (2.7) and the corresponding transformation of the multiplicity labels, 
permit us to find the isofactors of SU, 3 SO,, for coupling (p ,O)  x ( p 2 0 )  to ( A V O )  if the 
corresponding expressions for isofactors of SU, 3 SU2 x SU2 are available. 

The expression for isofactors needed for coupling to the projected basis states of 
SU, 3 SU2 x SU, was proposed by AliSauskas and NorvaiSas ( 1980) and simpiified by 
AliSauskas (1982). It can be written for SU,, 2 SO,, in the following form (p i  + p 2  = A + 
2v): 

(PiO) ( ~ 2 0 )  (AVO), [ 1, 12 k[LILZI . I  
= G( n ) (  - 1 ) (11 +12-LI-L,)/2+rP2-(1, +3l2-l)/2 

x [ ( 2 4  + n - 2)(21, + n - 2)( L, + L2 + n - 3)( L,  - L2 + 1 ) 

X (2v + n -4)!! (2h +2v + n -2)!!]1/2 

L ,  - L2)  - k ] !  ( LI  + L2 + n - 4 +2k)!! 
[ f ( ~ , - ~ ~ ) + k ] ! ( ~ , + ~ ~ + n - 4 - 2 k ) ! !  

t Unfortunately, in the corresponding equation (2.7) (AliSauskas 1983b), 8 ,  is omitted. 
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(- 1)x2"(212 + n -4-2x)!! ( I ,  + I2 + n - 4- 2k - 2x)!! TY X![f(Il + I2 - L ,  - L,) -XI! [+( I ,  + I 2  + L1 + L2)  + n - 3 -XI! 

[t( I ,  - I2 + L ,  - L2) + y]! (212 + n - 4 - 2y) ! ! 
X 

y ! [ ; ( L , -  L2- I ,  +12) -y]![f(l, - 4 )  - k +y]!(212 + n - 4 - 2 ~  -2y)!! 

[+( p ,  - I,) + k +XI! [+( p ,  - I ,)  +XI! 
( A + v - I 2 + x + y + l ) !  

X Ct(PI-I2)-k+yl![+(PZ-I2)+yl! 
( v - I ,  + x + y ) ! 

PI - 12 + x +U) tc P 2  - I2 + x + y 
k + t ( x - y )  t ( Y  - X )  

(5.2) 

On the RHS the Clebsch-Gordan coefficients of SU, appeared. G ( n )  is some 
normalisation constant and may be omitted. The parameters of isofactors considered 
in 0 9  5-7 may be permutted (pIFTp2 ,  I l S 1 2 ) ,  changing the isofactor only by a phase 

(- 1 ) " - L 2 .  (5.3) 

The multiplicity label k is equal in the SU4 2 SU2 x SU2 case to the Draayer (1970) 
labels K s  = KT. In the SU3 2 SO3 case, the states obtained correspond to Elliott's states 
( E -  as defined by AliSauskas (1978)) K =2k, up to an elementary renormalisation 
factor (for details and additional information see AliSauskas (1982)). 

The meaning of the multiplicity label k is not yet obvious for n 3 5 ,  but the bilinear 
combinations of isofactors may be expanded in terms of quantities (5 .2 )  with non- 
negative k 5 +( LI - v) (cf AliSauskas and Norvaigas 1980). Then the states with k > 
f (  L ,  - v), k 0 ( k  may be 0 only for both v - L2 and A even) form a complete system 
(cf Draayer 1970). The corresponding overlaps, found by AliSauskas (1982), are given 
by 

( L ,  +L2-2k'+n-4)!!  ) X 
1 
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( -  1 ) ( 1 0 + / , - ~ - L , - A 0 ) / 2  [?( I 12 - L2 - A o ) ] ! [ f ( A  + Y - 12)  - k ] !  
I 

1,. I,, [2( v - l2)]![f(A + v - L ,  + L 2  - 1 2 ) ] ! ( L l  + 1, + n - 3 ) ! ( 2 x  + A o ) !  

[$(A + v - L, - bo) + k - X I !  ( L ,  + I 2  + 2 k  - A o  + n - 4 - 2 x ) ! !  
( 2 k  -Ao - 2x)! [f( l2 - L2 - Ao) - XI! (A + v + L ,  - A. + n - 2 - 2 x )  !! 

X 

2’0( L ,  - lo) ! (1, + lo + n - 5 )  ! ! 
X 

[;( v - l o ) ] !  [&( L ,  +A0 - l o )  - k ’ ] !  [A( L I  + A 0  - l o )  + k ’ ] !  

X {[;(lo + I ,  - v - L2 - A,)]! ( L 2  - A o  + lo + n - 4 ) ! ! } - I  ( k  s k ’ ) .  
( 5 . 4 )  

Here A. = 0 or 1, so that A + v - L2 - A o  is even. The indeterminacy of ( - 2 )  !!/( -2) !! 
which appears for n = 3, v = 0 (in this case L2 = A. =,lo = 1 2  = 0) should be replaced by 
1 .  

6. Boundary value problems for coupling ( p , O )  x ( p 2 0 )  to ( A V O )  

Let us consider the quantities obtained from (3.4) by use of the special elements of 
the substitution groups (AliSauskas and Jucys 1967, 1974) of the parameters of irreps 
of both SU, and SO,: 

A + -A - U - n ,  P + v, P + -PI - n, 4 + P2, (6.1) 

L ,  + -Ll - n + 2 ,  L2 + L2, I ,  + -1,  - n 1.2, 12 +- 12, l 2 0 + ! 2 .  

(6.2) 

These quantities are expansion coefficients of isofactors for coupling ( plO)  x ( p 2 0 )  to 
( A v o )  in terms of their boundary values in the region 

The cardinality of this region is equal to or greater than the multiplicity of the 
corresponding irrep of the subgroup (cf AliSauskas 1978, 1983~).  Such quantities are 
proposed ( AliSauskas 1983~)  to be called pseudoisofactors. The proper isofactors may 
be expanded in terms of pseudoisofactors if the corresponding values of isofactors in 
all above-mentioned boundary regions are known. The deduction discussed in appen- 
dix 1 leads to the following expression for the isofactors which couple to antistretched 
( A )  basis states (1, = L ,  - L2 +J2, p ,  + p 2  = A + 2 v ) :  

= ( - l ) @ ’ + P 2 - f ,  [ (21,  + n - 2 ) ( 2 1 2 + n - 2 ) ] 1 ’ 2  
2 ( L, - p 2  + I ,  +!, -A, + n - 3 )/ 2 - L, + I, 

v)! ( p 2  - v)! ( 2 L 2  + n - 4)!! (2jl + n - 4 ) ! !  (j2 - L2 - Ao)!!  
A ! ( 2 L l  + n - 4 )  !! ( L ,  - L2)  ! ( 2 j 2  + n - 2 )  !! ( J 2  - L2 + A o  - l)!! 
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[;(A +LI -L2) + l]![&(A + V -  LI +L2- l o ) ] !  
R I ,  b "$ [;(lo- L2 - Ao)]! ( LI  + lo + n - 3 - 6,) !! 

(- I)y+'[;( p2-  1 2 )  + X I !  (21, + n - 4 - 2 x ) ! !  
x c  

x, y ,  z x ! y !  z![4(p2- v - I2  + I o )  - t X ] ! [ t ( L ,  - L,- I ,  + 1,) r X  - z]! 

[t( p2 - v + L,  - L2 - I ,  + lo)  - z]! 
[ f ( p 2 -  v + I , -  10) - x  - Z]![;(p, - L ,  +L,- I 2 )  + x  +z]! 

X 

,. 
[ ; ( I ,  + I , -  L ,  - L,) -y] ! (L ,  + L 2  + n -3  + y ) !  

( L1 +L, - I ,  + I ,  + n -4  - 2x  + 2 y ) ! !  ( p ,  - v + 2 L ,  - I ,  +lo + n -2  +2y) ! ! '  
(6.4) 

( A  + 2 L ,  - 1,  + I 2  + n - 2 - 2 x  +2y - 2 ~ ) ! !  
X 

Here 
2( - l)(~+So+A,-L,+L2-lo)/2 

( j 2 -  lo)[;(LI - L2- v - 6,+I,)]![f( v + A , + & -  L ,  +L2- lo)  - l]!' (6.5) Rj2I0 = + 

For special values of the parameters p1 = A + v, p 2  = v the following expression 
obtained by means of analytical continuation of (3.5) may be more useful: 

2 - - (-  1 ) ( / , - 1 2 - L , + L 2 ) / 2 - + '  L2+(v-!2+n-S)/2 

(21, + n - 2)(212 + n - 2) (  2L2 + n - 4) ! ! (21, + n - 4 )  ! ! (12  - L2  - Ao) ! ! 
( LI  - L2) ! (2Ll + f l  - 4) !! (212 + n - 2 )  !! ( 1 2  - L2 +A0 - 1 )  !! 

( LI +-I2 - 60 + n - 3)!! ' I 2  Wk( V, 1 2 )  W,(A + v, I , )  
X ( L l + j , + 6 0 + n - 4 ) ! ! ]  Wn(A +v,_Il)W,(v ,  12) 

[-( v - l o ) ] !  ( I o  - L2 + A0 - I)!! ( I 2  + Io + fl  - 4)!! 
x v n [ 0 z 3 1 ( ~ ~ ~ 2 ;  g ( L ,  + Io  - 6 + n -3)!! ( I I  + L ,  - L2 + I o  + n - 2 ) ! !  

2-'[ L1 +;( I2 + lo).+ n - 3 - z]! 
R1210? [&(L,  - L,- I ,  + I o )  - z] ! [ - ( l  ; 2 - Io) - z]! 

(6.6) X {[;( - L ,  - L2 10) + Z]! (Ll + L2 - + + n - 4 - 22) !!}-I. 

The antistretched states introduced by Moshinsky et a1 (1975; see AliSauskas 1978, 
AliSauskas and NorvaiSas 1980) are defined by the boundary condition: the special 
isofactor (6.6) taking values 61212 if I ,  = L ,  - L, + I ,  and 

1, 3 v - L ,  + L2 + 6 0  + Ao, 1 2 2  v - L I  ?-L2+60+A0. (6.7) 
Here S o = O  or 1, A o = O  or 1, so that V - L ~ - - ~ ~  and A + v - L 2 - A .  are even. 

Another solution of the boundary value problem for isofactors under consideration 
may be found by substituting (6.1) into (3.4) without the substitution (6.2). The 
pseudoisofactors obtained in such a way are expansion coefficients of isofactors for 
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the coupling ( p,O) x p 2 0 )  to ( A  v 0 )  in terms of their boundary values in the region 

P I = A  +v, P2 = v, 1, + 1, = L, + L2. (6.8) 

Thus (see appendix 1 )  the general expression for the proper isofactors which couple 
to the quasistretched ( Q )  basis states was obtained ( TI + T2 = L1 + L2) 

= (-  1 ) P z - y + ( I ,  +I,-L, - L 2 ) / 2 - 9 ( p ,  + P 2 + L I  + L Z + n - 3 ) / 2 - I 2  

(211 + n-2)(212 + n  -2)(pl-  V ) ! ( p 2 -  V ) ! ( L ,  +& + n  -3)!(2L1 + n  -2)!! 
A ! (2 7; + n - 2)!! (2 T, + n -2)!! ( T 2 -  L2)! 

WA(pl, I , )  WA(h + V, TI )  WA( V, T 2 )  

v n [ 5 , 7 ] ( 1 1 1 2 ?  LIL2) w n ( P ,  l 2 )  

x + y + z  

R’izio C (-’) 

X 
( L ,  - i2)! 
[g i2 - L2 - Ao)]! ( L ,  - To)! 

$ [f( To - L2 - Ao)]! x , y , r  x ! y ! z !  

[i( p 2 -  I2)  + X I !  (212 n - 4 - 2X)!! ( L ,  + L2 + 1, - 1, + n - 4 +2x)!! 
X [A(/, +1,-  L~ - L , )  -x-z]![$(P,- +I,- io) - x  -2]![f(P2- v -  i2 + io) 

( A - L I - L Z - n  +4)!! [;(PI - I , )  + z l ! ( L ,  - L2 - y ) !  { ( A  - L ,  - L2 - n +4  - 22) ! ! ( p ,  + L ,  + L, - 1, + n - 2 + 2x + 22) !! 

[ i ( p  - v + I ,  - L l  - L2+ To) -z]![f(A + I ,  + I , )  -Ll - X  +ty - z ] !  
X 

( L ,  - T0-y)![f(L1 - L2 - I ,  + 1 2 )  -ty]![f( p ,  - v + I ,  + r0, - Ll + y ] !  

(11 +12-L,  +&+TI - 4 + 2 ~ ) ! !  
X 

( I ,  + I ,  - L ,  +L, + n -4 -  2x +2y)!! 

when A - L ,  - L 2 -  n + 4 3 0 .  Otherwise the quantity in braces in (6.9) should be 
replaced by 

Here 
(-l)’(L, + L 2 - A  +n-6+22)!! / (LI  +L,-A +n-6)!! .  (6.10) 

The expression 

(211 + n - 2 ) ( 2 1 2  + n -2)(L, +L,  + n -3)!(2Ll + n -2)!!A7 
( LI - L2 + 1)(2 T, + n - 2) !! (2 r, + n - 2) !! ( r2 - L,)  ! ( L ,  - r,) ! 

X (2L,+n-4)!!)”’ W , ( h + ~ , l l ) W ’ , ( A + v ,  TI)W’,(v, 1;) 
AoA I A2 Wn( v, 1 2 )  

(6.1 1) 
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ill + f n  - I ; I 2  + f n  - 1 

appears for special values of parameters. 

tor (6.12) taking the values 8l2i2 if I ,  = LI  + L 2  - 1, and 
The quasistretched states are defined by the boundary condition: the special isofac- 

12 a LI - A  +Ao, T , a L l - A + A o .  (6.13) 

The pseudoisofactors appear if or R’j2jo in (6.4), (6.6), (6.9) and (6.12) are 
replaced by 8j210 or 8j2io. The pseudoisofactors coincide with proper isofactors if 
v s L ,  - a0 or L ,  - L2 s A in the first or second case, respectively. 

7. Bilinear combinations of isofactors for coupling (p ,O)  x ( p 2 0 )  to ( A V O )  

Procedures analogous to analytical continuation which was used to obtain (6.4), applied 
to ( 2 . 8 )  allowed us to obtain the following expression for bilinear combinations of 
isofactors (-1, = L ,  - L2 + _ I 2 ;  pI  + p 2  = A +2v):  

w 1 
= ( ( p* - v) ! (2L2 + n - 4) ! ! (21, + n - 4) ! ! ( L ,  + j 2  + n - 3) ! 

(PI@ ( p 2 0 )  (Avo)  

A ! ( P I  - Y)! (2L1+ n - 4)!! (2J2 + n - 2 ) ! !  (LI - &)! (-12 - L 2 ) !  

x [(21, + n - 2)(21, + n - 2 ) ] 1 / 2 ~ n l o , 4 ,  5 ,  6] (  i l l 2 ;  L , L J ( A  + 1)2(*+Ll+L2+n-3)/2 

Wh(A + v,J , )  W“(P2,12) 

Wh(v,!2)Wn(PI, [ I )  
X 

( - 1 ) ~‘+x2x-r -u  ( L ,  + j 2  + n - 3 + x - y - z )  ! 
z !  (x  - y - z ) !  ( y  - z ) !  ( 1 2 -  L2 - y + z ) !  x c  

x, y ,  2, U 

( L ,  + & - A  +n-4)!!  
‘ { (LI+L2-A +n-4-2x)!!  

( P ~ - V + X ) ! [ ; ( ~  + ~ - J l ) + y ] !  
( A  + X  + l ) !  ( L ,  +J2 + n - 3 + X  - 2 y ) !  [$( V -  L2) - x + y ] !  

X 

(-12- L2 +X -2y)! (!I + 11 -p2 + 2’ + n - 4 - 2 ~ ~ ) ! !  
X 

( p 2  - v + I ,  +_I2  + n - 2 +2x - 2y)!! U !  [$( p 2  - v -jl + 11)  + y - U]! 

[;( L ,  +L, + I ,  +_I2  + p 2  - v )  + n - 3 + x  - y  - U]!! 
[ f ( p 2 -  v + _ I 2 -  1 2 )  + x  - y  - U ] ! [ t ( 1 2  +_12-p2 + v )  - L 2 - y  +U]! 

X 

x [ ( I ,  - I 2  + Ll + Lz + n - 4 - 2u) ! !]-I (7.1) 
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if L ,  + L, - A + n - 4 3 0. Otherwise the quantity in braces should be replaced by 

(-l)*(A - L ,  - L 2 -  n + 2  +2z)!!/(A - L ,  - L,-  n +2)!!. (7.2) 

The system A of non-orthogonal isofactors with the multiplicity label j z  may be 
overcomplete. The values of the parameter j 2  satisfying the condition (6.7) correspond 
to a complete system of linearly independent isofactors. This is evident from the 
expression similar to (3.2) for general bilinear combinations of isofactors which couple 
irreps (plO) x ( p 2 0 )  or ( p j O )  x ( p i 0 )  to ( A V O )  in terms of the biorthogonal system of 
isofactors represented by (7.1) and (6.4). 

The sum should be taken over the summation parameter _I2, satisfying the condition 
(6.7), but in the case where A is overcomplete it is possible to use the pseudoisofactor 
in the RHS of the analogue of equation (3.2) and to take the sum over all values of 
the parameter j 2 ,  including these corresponding to the linearly dependent states of the 
system A. 

The methods discussed in appendix 2 allowed us to obtain the following expression 
for overlaps (J = L ,  - L2 + j ; ,  j 2  ~ j ; ) :  

( A  + 1 ) ! (  L1 - L2)!  (2LI + n -4 ) ! !  ( v  + L2+ A,+ n - 3) ! !  
X (2L2+n-4)!!(A + v-L,+ 1 ) ! 2 L , C ~ Z - u - ( " 2 - ! ~ - A O ) ~ 2  

(_I; - L, + A o  - l)!!  ( L ,  +i; + n - 3 ) !  (21; + n - 2)! !  
(21; + n - 4) !! (1; - L, - A,) ! ! (21, + n - 4) ! ! 

( j 2  - L ~ ) !  (2-4 + n -2 )  !! 
( L ,  + j 2 + n - 3 ) !  

X 

(2k)'-*o( k + t - 1) ! [f( Y - LI - A,) + t ] !  ( -1 ) ( !2 -J ; ) /2+k- f  

AZ ( f A  + k)! (&A - k)! [&( L ,  - L2) - k]! [&(L,  - Lz + k)]! (k - t ) !  

22f (2L1 +2L, + n - 4 - 2t) ! ! [;(A + v - j 2 )  - k]! (2k) ! 
(2t -Ao)!(LI +ji +A,+n - 3  -2t)!!(2L, +2L2+ n - 4 + 2 k ) ! !  

X 

[&(A + v - L2 - A,) + k - z]! ( L ,  + j 2 -  A, + n - 4  +2k - 2z)! !  
X 

[;( v -_I;) + t] ! ( 2 ~  + A,) ! (2k - A0 - 22) ! [&(j ,  - L2 - A,) - z]! 

x [ (A + v + L ,  7 A, + n  - 2  -2z)!!]-'.  (7.3) 

The sum both over t and over z is a Saalschutzian &( 1)  series (see Slater 1966). The 
number of summands in every sum never exceeds the multiplicity of the irrep [L,L,] 
of SO, in the irrep ( A V O )  of SU, as well as in the expression (5.4) for overlaps of the 
projected states. The indeterminate quantity (2k)( k + t - 1 )  ! which appears in the case 
Ao=O, k = 0 ,  t = O  should be taken as 1. 

The above-presented expressions of isofactors for coupling ( plO) x ( p 2 0 )  to ( A  vO) 
do not simplify considerably for low-dimensional irreps of the subgroup SO,. In this 
case another expression obtained by the analytical continuation of (2.8) (by a procedure 
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( - 1 ) ” + Y 2 x - Y - ’ [ ~ ( A  + L ,  -L2) +z]!  
x, y ,  L, U z !  (x  - y - z)! ( y  - z > ! (  L ,  - r 2 -  x + y  +z)! 

( p z -  v +x)! ( l ,  + I 2  + L1 - L2 + n - 2  +2u)!! 
x -  

( I ,  - L2 - y + Z) ! ( A  + x + l ) !  U ! [;( p2 - v + TI - / I )  + y  - U]! 
( A  + Y + 7, + n - 2 + 2y) ! ! 

X 
[ f ( p 2 -  v + r2- 1 2 )  +x - y  - U]![;( v -  r2) - x  +y]! 

( L ,  - r2 - x +2y)! ( r2 - L2 +x - 2y)! 
[f( I, + r, - p 2  + v) - L2 - x + y + U]! [f( 12 + I;  - p 2  - v) - L2 - y + U]! 

x[( p 2 -  v + r, + I ,  + n - 2 +2y) !! ( p 2 -  v + r, + l2 + n - 2 +2x -2y)!!]-’. 

X 

(7.4) 

The bases Q and (z form a biorthogonal system. In the case LI - L, > A the system 
(z is overcomplete. By analogy with (3.2) the bilinear combinations of isofactors may 
be expressed in terms of isofactors represented by (6.9) and (7.4). In such a way the 
linearly dependent states of the system (z may be expanded in terms of states with 
index l2 satisfying the condition (6.13). 

8. Conclusions 

In the present paper, the seven types of isofactors which couple the non-canonical 
basis states of the symmetric representations of the unitary groups have been considered 
as well as the seven types of labelling schemes of the repeating irreps of subgroups in 
the case of two-parametric irreps for the chains Sun 2 SO, and SU, 2 SU2 XSU21. 

Two principal approaches to the coupling and the labelling problem under consider- 
ation exist. One of them, which may be called integral, leads to a polynomial basis 
and to a complete system of the non-orthonormal isofactors, equivalent to bilinear 
combinations of orthonormal isofactors. The other approach, which may be called 
diferential, leads to the generalisation of the stretched or antistretched basis and to a 
t The identity of isofactors for chains SN,+,v,. 3 S,, xS,.. and SUn., . .3  SU,. xSU,.. (Vanagas 1971, equation 
(13.25), Chen 1981, Haase and Butler 1984) allows us to apply these results for the extemal labelling problem 
in the case of the special classes of irreps of the symmetric (permutation) groups. 
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complete system of non-orthonormal isofactors as solutions of the boundary value 
problem of some equations of finite differences. The overlaps of polynomial and 
stretched states form a unity matrix. In such a way a biorthogonal system of bases is 
constructed. 

The proposed variants of bases are more or less convenient in different regions of 
the parameters. In some regions the bases of projected or polynomial type may be 
overcomplete. (Luckily for us the projected basis and the basis A are never both 
overcomplete.) In the corresponding regions the bases of antistretched or quasi- 
stretched type are constructed in a more difficult way, because in such cases the 
additional problem of the expansion of the proper isofactors in terms of the simpler 
solutions of the boundary value problem has to be solved. The group theoretical 
meaning of the pseudoisofactors and pseudostates which appeared still awaits an 
explanation. 

In this paper we demonstrated the high effectiveness of the different methods of 
the analytic continuation of the discrete functions for the coupling coefficient problem. 
Methods based on the relations between the complementary groups allowed us to 
relate the isofactors under consideration and the expansion coefficients for chains 
Sp, 2 U2 and Sp, 2 SUP x SU2. Relations of the other kind allowed us to apply results 
obtained in the SU, 2 SU2 x SU, case for the Wigner-Racah calculus of SU, 3 SO,,. 
The substitution group technique allowed us to relate the results obtained for mixed 
tensor irreps and for covariant irreps. 

The metric tensor for a given non-orthogonal basis coincides with the overlaps 
matrix of the dual basis. The overlaps of the states of polynomial ( E ,  A, 0) type are 
always expressed as particular cases of the corresponding non-orthonormal isofactors. 
The overlaps for states of projected or polynomial A type were fully expressed as 
triple sums, with the number of summands of each kind never exceeding the multiplicity 
of states of the given irrep?. A special expression for the overlaps of the stretched 
states was obtained as well, but the attempts to find convenient explicit expressions 
for overlaps of antistretched or quasistretched states of SU, 2 SO, (for n 2 4) were 
unsuccessful. Unfortunately, the methods of substitution group have certain limitations 
for overlaps of SU, 2 SO, states (contrary to the SU3 2 SO3 case (AliSauskas 1978)) 
because the elementary overlaps lose after substitution their group theoretical meaning. 

An important question left open is the relation between the internal labelling 
operators for the Sp, 2 U,, SU, 2 SO, and SU, 3 SU2 x SU, chains in the case of 
two-parametric representations. 

Appendix 1. On the coordination of the boundary values cd isofactors 

The coordinated boundary values of isofactors in region (6 .3)  were found by AliSauskas 
(1978) for SU3 3 SO3 and by AliSauskas and NorvaiSas (1980) for SU, 3 SU, XSU,. 
The bilinear combinations of isofactors 

(Al.1) 3 vO0) ( ~ 0 0 )  (AVO) ( h 0 0 )  ( 0 ~ 0 )  (AVO) 
s2t2 w, ST c [(A Jljl + 

with the special values of parameters 
j,j, U ,  ST I[ slsl 

jl = j 2  + T, s ~ = S - S I  + b o ,  t z =  T - S ,  
t This condition is not always satisfied even by expressions given in appendix 3. 
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give a possible distribution of the boundary values in region (6.3) for isofactors which 
couple to the polynomial states as defined by Ahmed and Sharp (1972) and AliSauskas 
and NorvaiSas (1980). The quantity (Al . l )  was found after the examination of different 
coupling schemes of irreps of SU, 

(A+vOO)X(vOO)X(OvO) to ( A O O ) .  

It was easy to find a matrix, inverse of the triangular matrix formed by (Al . l ) ,  and to 
expand the antistretched states and corresponding isofactors in terms of polynomial 
states and related isofactors. 

The boundary values of isofactors in region (6.8) for I ,  < L ,  - A + A ,  may be found 
(up to the phase factor) by means of the analytical continuation of the quantity (4.7) 
after substitutions grounded on the dependency between the states of the complemen- 
tary groups Sp(4, R )  and SO,, (see AliSauskas and NorvaiSas 1980). 

In order to prove the choice of phases the following analysis was needed. The 
quantity (6.6) with I ,  + I ,  = L ,  + L, and the quantity (6.12) with I ,  - I ,  = L ,  - L, are the 
expansion coefficients of the basis A in terms of the basis Q and vice versa, respectively. 
It is necessary to demonstrate that the product of those two matrices is the unity matrix. 
The proof is rather simple in the case A + L, 3 L ,  3 v + CS~, when the expansion matrices 
are triangular. Otherwise the expansion coefficients are proportional to Saalschutzian 
,F3( 1 )  series (see Slater 1966) and should be transformed to a more convenient form 
by means of the relations ( d  + e + x = a + b + c )  

? 
(-l) ' (d - s ) !  ( e  - s ) !  ( b  - s - l ) ( x )  

S !  (a  - s) !  ( b  - S )  ! ( c  - s + l ) !  

- x !  ( d  - a ) ! ( e  - a ) !  
b !  ( b  - x - l ) !  ( c  - e ) !  ( c  - d ) !  

- 

( b - i -  l ) ! ( d - b + x - i ) ! ( e -  b + x - i ) !  
( x  - i ) !  ( a  - i)! ( c  + 1 - i)! x c  , 

,a0 

(- l ) " (d  - s ) !  ( e  + s ) !  ( b  - s - l ) (xj  
? s ! ( a  - s ) ! ( b - s ) ! ( c  +s + l ) !  

- x ! ( d - a ) ! ( e + d  + l ) !  - 
b !  ( b  - x - l ) !  ( c  - e ) !  ( a  + c + l ) !  

a (A1.3) 

Particular cases of (A1.2) and (A1.3) with x = 0 are equivalent to the Saalschutz 
summation theorem (see Slater 1966, 02.3). The use of quasipowers q'"'= 
q(  q - 1) (  q - 2) . . . ( q  - x + 1)  allows us to join two summation intervals which appeared 
in (6.6) and (6.12) as consequences of (6.5) and (6.11). Equations (A1.2) and (A1.3) 
are proved by induction with the help of the relation 

( e  + j ) !  ( b  - j  - l ) !  ( d  - b + x  - j ) !  
j a o  ( X  - j ) !  ( a  - j ) !  ( b  + c - x + 1 + j ) ! '  

(A1.2) 

( b  - s - x )  = ( l / b ) [ ( b  - x ) ( b  - S )  - S X ]  ( b  + 0) 
and the Saalschutz formula. 

After transformation by means of (A1.2) or (A1.3) the sum over matrix indices 
may be taken using the Saalschutz formula, as well as the remaining sums, and the 
reversibility of the transformation between the bases A and Q is proved. 
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Appendix 2. On the proof of expansions for overlaps (5.4) and (7.3) 

The results of AliSauskas and NorvaiSas (1980) and AliSauskas (1982) allow us to write 
some overlaps for SU, 3 SU2 x SU2 in the form 

(A2.1) 

(A2.2) 

B and S are dual bases of SU, 3 SU, x SU2 for the irrep ( A V O )  as defined by AliSauskas 
and NorvaiSas (1979); E and are projected (Draayer 1970) and dual to such bases. 
The matrix (SIB) is the inverse of the matrix ( B I E )  (both were found by AliSauskas 
and NorvaiSas (1979)). The matrices (AIS) and ( A l B )  are discussed in appendix 1. 
The matrix elements of (EIA) can be expressed as particular cases of the quantity (5.2) 
in the form of special 3 F 2 ( 1 )  series and transformed into a more convenient form by 
using the relation between the special 3 F 2 (  1 )  and Saalschutzian ,F3( 1) series (cf Slater 
1966, 0 2.5). This relation may be represented in the form of a new expression for 
special SU, Clebsch-Gordan coefficients (AliSauskas 1978, 1982) 

(2L + l ) ( lz-  K ) ! ( L -  K ) !  (-l)"[f(ll+ 12-  L -  6 ' )  + K -XI !  '( ( l , + K ) ! ( L + K ) !  ) ? (2x+S ' ) ! (2K-Sf-2x)!  

x{[f(l, +1, - L -  6') -X]![f(l, - I ,  + L -  6 ' )  - X I !  

x [+( L - I ,  + I, + 6 ' )  - K + XI!}-' (A2.3) 

(6' = 0 or 1, K 0, 1, + I ,  - L - 8'  is even) and is obtained by the complementary group 
technique. Here A is the triangle coefficient defined by (12.15) (Jucys and Bandzaitis 
t977) or (3.276) (Biedenharn and Louck 1981). 

Equations (2.8) and (7.4) used for overlaps do not simplify considerably for low 
values of L , ,  L,, 11, I ,  if values of A, Y, p are high. Special rearrangements of sums 
are useful in this domain (some examples are given in appendix 4). The overlaps of 
the states 0 can be expressed as polynomials in A, v for fixed values of L ,  - L2 and 
the multiplicity labels if they are represented in the following form: 

(A2.4) 

(after performing the transformation of the matrix elements (Q(A)  by means of (A1.3)). 
A rather bulky expression (A2.4) can be convenient for analytical (especially 

computer based) calculations. The substitution inverse to (6.1) allows us to find the 
overlaps of the states B in the form of polynomials as well. 

Appendix 3. Overlaps of non-canonical basis states for the SU3 3 SO3 chain 

AliSauskas (1978) obtained a simpler expression for the overlaps of the SU3 3 SO3 
non-canonical basis of Bargmann-Moshinsky B type. The proof of this formula was 
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commented on by AliSauskas et a1 (1981). The results and methods of AliSauskas 
(1978) are sufficient to derive the overlaps of the SU3 2 SO3 non-canonical bases of S,  
A, Q type and (in the cases of the particular values of parameters) of A, Q type in 
the form of double sums. 

Let us introduce the following notations: 

S = O  or 1, A = O  or 1, ;i=o or 1, 

so that 

A s p - L - 6 ,  A-L-A, p - L - A  (A3.1) 

are even integers. It is easily seen that 6 is equal to L2 for bases B and S, while A is 
equal to L2 for bases A, A, Q, 0. In all cases L = LI .  

The asymmetric quantities GB, CA and Go are defined as 

GB( 110120; z;O/;O) 

- ( p + S + A ) ! ! ( h  +L-A)!!(A + p  +L+6) ! !  - 
( A  + p  + 1 ) ! ( 2 L + S + l ) ! ( l i O - S - A ) ! !  

(2110 + 1) ! (2120 + l ) !  ! (120- A - 6 )  !! (2110 + 1)  !! (21;o + 1)  ! 
1fo(120-8 + A -  1)!!2'10+'40(1{0- S)!I;S,  

( A  +1)!(2L-A)!(p + S + A ) ! !  W3(A + p , j I )  

( A  + p + L + a)!! ( A  + L - 6) !! (12  - 6 - A )  !! (1; - A + 6 - 1) !! 
X 

(2 TI + 1) ! (2 T2 + 1) ! ! ( T2 - A - 6 )  ! ! 2 ';(2 TI + 1 ) ! ! (2 Ti + 1) ! 
Tt( r 2  - A + S - 1 ) ! ! ( TI - A )  ! 1;" 
( A  + l ) ! ( p  + 6  +A)!! W3(A +p,  f i )  

X 
(A-L-A-l)!!(A + p - L + S -  1)!!(2L+6+1)!(  T;-A-a) ! ! '  

( TI + T2 = + T; = L + A ) .  

Equation ( 5 . 6 )  of AliSauskas (1978) may be written in the following form: 

( ( 2 ; L I  (i%:;L) 

GB(110120; z { O 1 ; O )  
= (-  l ) ( f i o - A - & ) / 2  ~ / 2 - A - 2  2 

(A3.2) 

(A3.3) 

(A3.4) 
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[;(A + p  - L -  12 +A)]!(&-A + 6  - l)!!(-1)' 
X 

[ f ( p - 1 2 - i ~ o + ~ + ~ ) 1 ! 2 3 ~ + 3 / 2 ' 2  z !  [;(p - 12) - z]! 

[$(p - A - 6) - z]! ( A  + 6 + 1 + 2 ~ ) !  
[$( 120- A - 8)  - z]! [;(A + L + 12 +6)  + 1 +z]![q(A - L + A )  +z]! 

X 

( A  + L + A + l  +2z)!! 
X (A3.5) 

Equations (5.3) and (4.10) of AliSauskas (1978), cf AliSauskas 1983a, equation (4.2)) 
give 

[$(A +L-120+6)+1 +z]!' 

(( ; , : g L  I ( l(;;:;L) 

( P + A + - t 6 )  2A + ~ - 3 ( A + 6 ) / 2 + 1  
- - (-1)-(+-';J/2 

GB( l lo l io ;  11040) 

[;(A + p  - L - 6)  - z]![$(p - A  - 6) - z]! (- 1)' 
I,, [$(A + p  - L -  12 +A)]! z ! [ $ ( p  - I io )  - ~]![$(12-A- 6) - z]! x c  

[$( + 1 2 )  - I]! [$( l2 - A - a)]! 23'2/2-3z 
X 

[$(p - /2)]![4(40 - A  - 6 - p + 12)]! ( I 2  - A +6  - l)!!  (L + l 2 ) !  

[$(A + p  +L+12-A)-z]![f(A + p  +I',O-A-S)-Z]! 
X 

( A + p + L - 6 + 1 - 2 ~ ) ! ! ( A + p + l - A - 2 ~ ) !  * 
(A3.6) 

Equations (5.3) and (4.9) of AliSauskas (1978) give 

=(-l)(!2-A-6)/2G-(/ 1 / ' I / )  
A - 1 - 2 3 - 1 - 2  

[ i ( p  -lo)]!(lo-6 + A -  l ) ! ! 2 A + 3 ( ~ ' - ' o ) / 2 - 3 2 ( - l ) z  
x c  

io, ( L  - Io) ! [&'2 + lo)]! [$ (p  - 1 2  - lo +A + a)]! [f( 10 - 6 -A)]! 
[$(p - A  - 6 )  - z]! [;(A + p  + L +-li - A )  - z]! 

[&(A - L + Io- a)]! ~ ! [ ; ( p  - 1 0 )  - ~]![$(_l;- A - 6) - z]! 

[$(A + p  + L -  l o -  A) - z]![;(A + p  - L -  6)  - z]! 

X 

X (A3.7) ( A  + p  +L-6  +1-2~)! ! (A + p  + 1  - A - ~ z ) !  * 

Equations (5.6), (4.9), (4.10) and (4.1 1 )  of AliSauskas (1978) allow us to obtain 

= ( - 1 ) W 2 ) / 2  ( p + A + 6 ) ( A  + L - A + 2 ) ( A  + p + L + 6 + 2 )  
2A+3(A+b)/2+3G-( I f  1 1 ,  

A - 1 - 2 , - 1 - 2  I ) 
(- 1 ) ( ~ - L - / : + b + A + ~ ) / 2 2 1 , - f ~ + I  '' { '"" +( I2 - I:)[$(p - L - I: + 6 + A  + &) - l]! 

1: 

[$(A + p - L - I: +A)]! [$(p - I:)]! ( I :  - A  + 6 - 1)  !! 
[ i ( L + _ I , - p  - s - A - E ) ] ! [ $ ( A  + p - _ l , ) ] ! [ f ( p  -j2)]! 

X 
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[;&-A- S)]! (L+l:+A- l)!! 
(J.7 - A + S - 1) ! ! [ $ ( I :  - A - S)]! ( L  + j 2  + A  - 1)  !! 

X 

[$(A - L +lo-  S ) ] !  ( L -  l o ) !  sz [$(p - l o ) ] ! ( l o -  6 + A -  l)!! 

X [$(Io-S-A)]![$(!;+Io)- l]!23'o/2-3z (-1Y 
[$(!;+lo- p - A -  S ) ] ! z ! [ $ ( p  - l:) - z]! 

[ ; (p - A -  8) - z]!(A + S  +1 + 2 ~ ) !  
[$(Io - A - 8 )  - z]![$(A - L +A) +z]! [$(A + L - lo + 6 )  + 1 +z]! 

X 

( A  + L + A + l  +2z)!! 
[$(A + L + l i + S ) + l  +z]!' 

X (A3.8) 

The states of the system A as well as the overlaps are defined only for values 
j22 p - L + A  + A  + 6 which correspond to the linearly independent states of A. In the 
case L 2  p +& the superfluous states in A disappear and (A3.8) takes a simpler form. 

The analytical continuation of equation (5.6) of AliSauskas (1978) and equation 
(4.2) of AliSauskas (1983a) after substitution (6.1), (6.2) and A a S ,  l lo+  r,, 120+ r2 
allows us to obtain 

= (-  1 i;-A-s)/22-(A+~-L-s)/2 Go( f, T2;  f l  r;) 
[ i ( p  - lo)]! ( L  + l o ) !  ( lo  - S + A -  1)!!2'-'J2( - 1)' 

:z [$( lo - 6 -A)]![$( Io + c)]![$(p - c - lo + A  +S)]! 

[$ (p  - A  - 6 )  - z]! ( A  + p  - L -  lo-  A - 1 - 2 ~ ) ! !  
( A  + L + l o -  S + l)!! ~ ! [ $ ( p  - lo) - z]![$( T; - A - 8 )  - z]! 

( A  + p  + L -  6 + 1 - 2 ~ ) ! !  ( A  + p  - TI - 2 + 2 ~ ) ! !  
[$(A + p  - L -  S) - z]! ( A  + p  - A  + 1 + 2 ~ ) !  

X 

X (A3.9) ' 

( p + S +A)( A - L - A + 1 ) ( A  + p - L + S + 1) 
2 ( L - A  - A ) / 2 + 1  Go( f i  T;; TI r 2 )  

- ( - ( F  - i; U 2 - 

[$( r 2  + lo)  - 1]![$(&- A - S)]!(A + L + lo-  S + l)!! 
I,, [$( T2 - p - S - A  + lo)]! ( lo-  6 +A - l)!![i(p - lo)]! 

2 ' 0 / ~ + ~ (  - 1 ) '[$( p - A - 6) - Z] ! 

x c  

X 
( L  + l o ) !  z![$(p - C )  - z]! 

TS(A -L+A)+zl!(A + S  + 2 ~ + 1 ) !  ,. 
[$ ( lo -  A - 8 )  - z]!(A + L +A +G + 1F 

x[(A - L -  l o + S  +2z + l)!!(A - T', +A + S  + 2 ~  + l)!!]-'. (A3.10) 

The overlap (91 Q )  may be expressed by (A3.10) only in the region L ,  S A +A,  in which 
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the system @ does not include the superfluous states. Otherwise the right-hand side 
of (A3.10) is indefinite. 

All the separate sums in (A3.5)-(A3.10) are Saalschutzian 5F4( 1 )  series. Sometimes 
their expansion in terms of Saalschutzian 4F3(1) series by methods similar to those 
used for the proof of (A1.2), (A1.3) may be very useful because of the relations between 
different 4F3( 1) series (cf appendix 4 and Slater (1966, 0 4.3.5)). 

Equations (A3.5) and (A3.6) have fewer summands if ZzoS /io. Equations (A3.7), 
(A3.8) are more convenient for while (A3.9), (A3.10) are more convenient for 

The indeterminate quantities of type ( p  +6  +A)[f (120+12)  - l]! in (A3.6), (A3.8) 
and (A3.10) in the case of p = O  (in this case A =  6 = l z O = j 2 =  r2) should be replaced 
by 2. 

i2< i;. 

Appendix 4. Some special cases of isofactors and overlaps for SU, 3 SO, 

Dual approaches to isofactors lead to different complementary restrictions for the 
intervals of summation parameters (cf Hecht and Suzuki 1983). More universal 
expressions exist in multiplicity-free cases with L ,  = L2, namely 

= (-1) 8+(A+¶-L,+1z+n) /24[ (h  + p  + n -  1)(212+n-2)]1/2 

} (A4. la)  
~ ( P - L , )  : ( p + ~ , + n - 4 )  $(2l2+n-4) 

a(q - LI - 1 )  f ( q  + L ,  + n  -3) i ( A  + p  + n -3) 

( A  + p  + n  - 1)(212 + n  -2) (p  - A ) ! ( Z 2 -  L l ) ! (LI  + I 2  + n  -3)! 
= 2p+FL-L~-12 ( A  + q + n - 1 ) 

(A4.1b) 

( A 4 . 2 ~ )  

x [ ( I ,  - v +2z)! ( v  + L 2  + n -3 -2z)!!]-’. (A4.2b) 
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Equations (2.8) and (7.4) allow us to prove that special orthonormal isofactors are 
equivalent to recoupling matrices of SU2 with quatervalued parameters. Such quantities 
are not exotic: the Racah coefficients with quatervalued parameters (see Kildyushov 
1972, Kildyushov and Kuznetzov 1973, AliSauskas 1974, Knyr et al 1975, Kuznetzov 
and Smorodinsky 1979, Suslov 1983) allow us to relate hyperspherical functions of 
SO,, labelled by irreps of different chains of subgroups (i.e. they are Weyl coefficients, 
according to Wong (1978), for symmetric irreps of SOn and are equivalent to the 
recoupling matrices for the complementary group Sp(2, R )  or SU (1 , l ) ) .  The most 
symmetric expression for 6j-coefficients (see Jucys and Bandzaitis 1977) allowed us 
to obtain (A4.1 b) and (A4.2b). The number of summands in those expressions is the 
minimum possible. Those two expressions embrace all the isofactors found by Hecht 
and Suzuki (1983) as well. 

If LI  - L2 = 1 and p - L2 is even, the sums in (2.8) may be rearranged in such a 
way (separately for I I  = 12* 1)  that Saalschutzian &( 1)  series appear and, in their 
turn, they may be transformed by methods used for (A4.1) and (A4.2) (cf Slater 1966, 
§ 4.3.5). The final expression is then 

1 [ I ,  12 [L1=L2+1,L21 

.YA) ( A  + q + n - 1 ) ! 2pcp-Il-Lz ) 

(PO) ( 0 4 )  ( A b )  

- - Wn-l(A, Ll)Wn-I(p, L2) 
WXP,  h )WXq,  l2)(q+12+n)8 

!(I1-L2-8)!( l1  +L2-cT+n-2)! 1'2 

(-1)@+'(p + p  - L2 + I ,  + n  -2-2z)!! 
x c  z ! [-( A - L l )  - z]! [$( - L2) - z]! 

X [( 

X ( p  + L2 + n - 1)(11- LI + 1 - 2~)]{[+( p - A + Ll - 11) +z]! 

- L2 + 1)  '( p - A + 1)(2L2 + n - 1 +2z) - (- 1) '( L2 + l2 + n - 1)' 

x ( I ,  - LI + 1 - 22) ! (2L2 + n - 1 + 22) !!}-I. (A4.3) 

A similar transformation may be fulfilled in the non-multiplicity-free LI - L2 = 2 
case, but the final result is too bulky to be given here. Let us present only the overlaps 
obtained in this way from (2.8) (L, = L2 +2).  

(Here 8= ~ I , , I ~ + l . )  

( ( A o p ) B  1 ( A 6 F ) B  ) 
(L, L2)[LIL21 (Ll L2)[LI L21 

- - K ( A p  ; L2 +2, L2) 
( A  + L 2 + n )  

X [( A + L2 + n - 1 ) ( A  + 1 + n - 1)(2L2 + n - 1) - p - Lz- n + 13, (A4.4) 

( ( A o p ) B  1 ( A O / L ) B  ) 
( L ,  L2)[LIL2I (L2Ll)[L, L21 

= - H , , ( A p ;  L2+2,Lz)(A+p+2L2+2n-2) 

(A4.5) 
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( A  + p + n - 4)!! ( A  + L2 + n - 3 ) ! !  ( p  + L2 + n - 3 )  ! ! ( 2  L2 + n - 2 )  ! ! 
( A  + p + n - 3)!! ( A  + L2 + n - 2 ) ! !  ( p  + L2 + n -2)!!  (2L2 + n - l)!!' 

- - 

(A4.6) 

The remaining overlap of E states with I , ,  = L,, lzO = L1 = L2 +2 may be found by means 
of the permutations (3.6). 

The following expression for the special isofactor is of importance (NorvaiSas and 
AliSauskas 1974): 

(A4.7) 
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